Problem 10.57

M,R
A disk rolls down an incline.
a.) Derive an expression for the acceleration of its
center of mass.
This is a N.S.L. problem. In fact, there are two 0

ways to do this, one in which we look at the

translational and rotational motion of and about the body’s center of mass,
and one in which we look at the system as though the mass was executing a
pure rotation about its contact point. I'll first do the most obvious, which is
the former. | will show the least obvious as extra at the end.

We don’t want the disk to slip, so there has to f
be friction, but in cases like this where we have

a rolling object there is both rolling friction and

static friction. As we will never be given the

coefficient of friction in these problems, the

bottom line is that we have to deal with friction

as an unknown with which to be dealt.

1)

When summing the torques, we don’t need
components so a more useful f.b.d. is shown to the
right. The torque about the center of mass due to
“N” and “mg” are both zero as they both pass
through the point about which we are taking the
torque. With that, the rotational N.S.L. expression

becomes:
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Note: Why the negative sign in front of “fR?” A couple of reasons. If you do the
right-hand rule appropriate for cross products, you get a vector into the page. OR,
if you notice the frictional force makes the body want to angular accelerate
clockwise. Any of those will give you a negative torque. As for the negative sign in
front of the acceleration term, again, the body is angularly accelerating clockwise.
That is a negative rotational vector (also, the only torque term on the left side of
the equation is negative, so the angular acceleration term on the right better be
negative, also. Otherwise, you have an equation that isn’t an equality.

3)

Doing a knee-jerk summing of the forces, we /
get: S~

2F:
N-mgcos® =ma,

= N=mgcoso

Unfortunately, as the frictional force is a little bit static
and a little bit rolling (and as we have no W), this is N/
useless (hence the “knee-jerk”). Continuing: / mgsin®

—f+mgsin® =ma

mgcosO

= f=mgsin0—ma

We don’t know the acceleration or the frictional force so we need another
expression. That will come from summing the torques about the disk’s center
of mass.
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N . . : 1
Note that the moment of inertia for a disk about its center of massis I = EmRz.

Remember that the relationship between the acceleration of a rolling body’s
center of mass and angular acceleration around that center of mass is a_,, = Ro.
(The justification of this follows the same line as was presented in the last part of
the last problem in showing that for a rolling object, v, =R®.)

With all that, we can combine the two derived relationships and write:
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With f =mgsin0—ma, we can combine (eliminating the “f’s,” and write:
1 .
Ema:mgsme—ma
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a=—gsin0d
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b.) How would the system have differed if the body had been a hoop of the
same mass and radius?

Before looking at the math, what would we expect conceptually?

With all the mass at the rim of the hoop, its moment of inertia would have
been bigger than the disks (more mass is distributed, on average, farther
from the central axis). With the same torque being applied in both cases, a
larger moment of inertia would means a smaller angular acceleration.
That’s what we would expect. This is the same conclusion the text’s
Solution Manual came to, but they did it by actually doing the math (it’s
the same problem with a different moment of inertia . . . which is not
something you have to do unless you don’t see the conceptual side of it).

c.) What is the minimum coefficient of frictional required to maintain rolling
without slipping?
Assuming all the friction is static, we can write:

f=pN
= mgcoso

5.)

EXTRA: At the end of the last problem, | pointed out the motion of a body that is
rolling looks different from different coordinate axes, but that the angular
velocity of the mass of material about any axis on the structure will be the same.
There are some interesting consequences to that that | didn’t point out.

Let’s say you get a very quick glimpse of an object that is partially hidden behind
a curtain. In the instant you get your view, you see the top part moving faster
than the center of mass, as shown below.

SO WHAT’S HAPPENING BEHIND THE CURTAIN?

6.)

From our torque calculation, we have additionally derived the relationship:

fg=lma
T2
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Equating the two frictional force expressions, we get:
1 .
pu.mgcos0 = gmg sin®
. _ (l) sin®
Hs 3)8 cos0
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FINI!' The following is extra.

6.)

One of two things could be happening. One possibility is that of a disk rolling on
a surface. The other is that of a disk pinned at one edge that is executing a pure
rotation about that point. (See sketches.)

To possibilities:
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rolling

pinned
(pure rotation)

WHAT’S INTERESTING IS THAT INSTANTANEOUSLY, THERE IS NO DIFFERENCE
BETWEEN THE PHYSICAL MANIFESTATIONS OF THE TWO SITUATIONS.
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So let’s rethink our incline problem. If we think of the
motion as an instantaneous, pure rotation about the
contact point (see sketch), we can sum the torques
about that point and . . . well, you'll see!

Calling the point of contact point P, the torques due
to “f” and “N” will both be zero as they pass through
that point, and the only torque acting is due to gravity. N
Using the 1, approach, we get simply:
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—’Fg‘rL = —Ipoc

—(mg)(RsinB) = —L o

mg

Because we have eliminated the second
major unknown (that of friction—it’s torque
is zero), all we have to do is use the Parallel
Axis Theorem to determine Ip, use the ever

= ! = i
present a=Ro and we are done! r, =Rsin6 mg
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We can write (or re-write) that torque expression in a
more complete form as:
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This is the same relationship for “a” that we
derived back on page 4, except all we had to
do here was sum the torques about the
instantaneous fixed point, use the Parallel
Axis Theorem, and we’re done.

r, =Rsin6 mg
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With the moment of inertia about the center
of mass being
I, = LR
2 f
The Parallel Axis Theorem yields a moment
of inertia about point P as: N mg

I =1, +md’

= lmR2 +mR?
2

Remembering that the angular acceleration
is related to the acceleration of the center of
mass by:

r, =Rsin6 mg
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So if there are two ways to do these problems, which way should one choose.

My advise is to look to see what the system is actually doing, then use the
approach that most natural fits the system. In other words:

1.) Ifitis a system like a ball rolling down an
incline, a situation in which there is clearly cm
acceleration of the center of mass along with
angular acceleration around the center of mass,
then use the center of mass approach (i.e., the

one we originally used).

2.) If, on the other hand, the system is like a
pinned beam rotating about one end where
there is clearly a “rotation about a fixed point,”
then use the fixed point approach.

X

Both approaches will ALWAYS work, but in most cases, one will be easier to
negotiate than the other (trying, for instance, to deal with a pinned beam by
looking at the acceleration of its center of mass, etc., is a HUGE hassle!). In the
end, though, it is your choice.




